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Abstract Global card fraud losses amounted to 16.31 Billion US dollars in 2014
[1]. To recover this huge amount, automated Fraud Detection Systems (FDS) are
used to deny a transaction before it is granted. In this paper, we start from a graph-
based FDS named APATE [2]: this algorithm uses a collective inference algorithm
to spread fraudulent influence through a network by using a limited set of confirmed
fraudulent transactions. We propose several improvements from the network data
analysis literature [3] and semi-supervised learning [4] to this approach. Further-
more, we re-designed APATE to fit to e-commerce field reality. Those improvements
have a high impact on performance, multiplying Precision@100 by three, both on
fraudulent card and transaction prediction. This new method is assessed on a three-
months real-life e-commerce credit card transactions data set obtained from a large
credit card issuer.

1 Introduction

Nowadays, e-commerce becomes more and more important for global trade: sales
of goods and services represented more or less 2,000 billion dollars in 2014 and
it was estimated that on 7,223 millions peoples on earth, 20 % were e-shoppers
[5]. Part of the reasons of this success is easy online credit card transactions and
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cross-border purchases. Furthermore, most organizations, companies and govern-
ment agencies have adopted e-commerce to increase their productivity or efficiency
in trading products or services [6].

Of course, e-commerce is used by both legitimate users and fraudsters. The As-
sociation of Certified Fraud Examiners (ACFE) defines fraud as: ”the use of one’s
occupation for personal enrichment through the deliberate misuse or misapplication
of the employing organization’s resources or assets ”[7].

Global card fraud losses amounted to 16.31 Billion US dollar in 2014 and is
forecast to continue to increase [1]. This huge number of losses has increased the
importance of fraud fighting: in a competitive environment, fraud have a serious
business impact if not managed, and prevention (and repression) procedures must
be undertaken.

For those reasons e-commerce and credit card issuers need automated systems
that identify incoming fraudulent transactions or transactions that do not correspond
to a normal behavior. Data mining and machine learning offer various techniques to
find patterns in data; here, the goal is to discriminate between genuine and fraud-
ulent transactions. Such Fraud Detection Systems (FDS) exist and are similar to
detection approaches in Intrusion Detection System (IDS). FDS use misuse and
anomaly based approaches to detect fraud [8].

However, there are issues and challenges that hinder the development of an ideal
FDS for e-commerce system [9]; such as,

• Concept drift: fraudsters conceive new fraudulent ways/methods over time. Fur-
thermore, normal behavior also varies with time (peak consumption at Christmas
for instance).

• Six-seconds rule [2]: acceptance check must be processed quickly as the algo-
rithm must decide within six seconds if a transaction can be pursued.

• Large amount of data: millions of transactions occur per day whereas have to be
analyzed and acceptance must be granted in seconds.

• Unbalanced data: frauds represents hopefully only less than 1% of transactions
but predicting a pattern is harder with unbalanced dataset.

The presence of those challenges leads to high false alert rate, low detection accu-
racy or slow detection (see [10] for more details).

This work focuses on automatically detecting e-commerce fraudulent transac-
tions using network (or graph) related features. Our work is based on a recent paper
[2] which introduced an automated and field-oriented approach to detect fraudulent
patterns in credit card transactions by applying supervised data mining techniques.
More precisely, this algorithm uses a collective inference algorithm to spread fraud-
ulent influence through a network by using a limited set of confirmed fraudulent
transactions and take a decision based on risk scores of suspiciousness of transac-
tions, card holder and merchants.

In this paper, several improvements from graph literature and semi-supervised
learning are proposed. The resulting fraud detection method is tested on a three-
months real-life e-commerce credit card transaction data set obtained from a large
credit card issuer in Belgium.
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The following questions are addressed:

1. Can we enhance graph-based existing FDS in terms of performance?
2. How can we make FDS as suitable for real application as possible?
3. Is semi-supervised learning [4] or feedback [9] useful for this Graph-based

FDS?

Our approach takes into account various field/ground realities such as the six-
second rule, concept drift, dealing with large datasets and unbalanced data. It also
has been conceived in accordance with field experts to guarantee its applicability.

The rest of this paper is divided as follows: Section 2 introduces background and
notation. Section 3 reviews related work. Section 4 details the proposed contribu-
tions. Experimental comparisons are presented and analyzed in Section 5. Finally,
Section 6 concludes this paper.

2 Background and Notation

This section will first introduce some basic facts about fraud detection, since be-
havior of fraudsters has to be taken into account in the development of algorithms
designed to counter them. Then some useful graph notation is reviewed.

2.1 Frauds

There are many fraud detection domains but internet e-commerce presents a chal-
lenging data mining task (see Section 1) because it blurs the boundaries between
fraud detection systems and network intrusion detection systems.

As in many domains, profit-motivated fraudsters interact with the affected busi-
ness. [11, 12] describes comprehensively this interaction: the fraudster can be inter-
nal or external to the business, can either commit fraud as a customer (consumer)
or as a supplier (provider), and has different basic profiles. From this description,
it comes out that professional fraudsters’ (as opposed to occasional ones) modus
operandi changes over time. Therefore, fraud detection system algorithms should
also adapt themselve to new behaviors. This is refered as ”Concept drift”: the con-
stant change in fraudsters behavior.

2.2 Graphs

Consider a weighted directed graph or network, G, assumed strongly connected with
a set of n nodes V (or vertices) and a set of edges E (or arcs, links) [13, 14]. The
adjacency matrix of the graph, containing non-negative affinities between nodes,
is denoted as A, with elements [A]i j (also written ai j) ≥ 0. The natural random
walk on G is defined in a standard way. In node i, the random walker chooses the
next edge to follow according to reference transition probabilities
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pi j =
ai j

n

∑
j′=1

ai j′

(1)

representing the probability of jumping from node i to node j ∈ Succ(i), the set
of successor nodes of i. The corresponding transition probability matrix will be
denoted as P. In other words, the random walker chooses to follow an edge with a
probability proportional to the affinity (apart from the sum-to-one normalization),
therefore favoring edges associated to a large affinity. The matrix P, containing the
pi j, is stochastic and is called the reference transition matrix.

3 Related Work

Credit-card Fraud detection received a lot of attention, but the number of publica-
tions available is limited. Indeed, credit card issuers protect data sources and most
algorithms are produced in-house concealing the model’s details [2].

As for any machine learning modeling process, two main approaches can be
used: a supervised and an unsupervised scheme. Supervised learning uses labels
(the observed prediction of an instance, here the fraud tag) to build the classifi-
cation model, where unsupervised simply extracts clusters of similar data that are
then processed. Common unsupervised techniques are peer group analysis [15] and
self-organizing maps [16] while common supervised techniques are artificial lo-
gistic regression, neural networks (ANN) and random forests, meta-learning, case-
based reasoning, Bayesian belief networks, decision trees, logistic regression, hid-
den Markov models, association rules, support vector machines, Bayes minimum
risk and genetic algorithms. The reader is advised to consult [17] for more detail
about credit card fraud detection, and [11] for a wider review on fraud detection.

According to [2], APATE was the only one to include network knowledge in the
prediction models for fraud detection: This model first builts a tripartite graph (see
below) and then extracts relevant risk scores for each node.

In this work, we follows the methodology of APATE [2] (which is described in
this section, to make this paper self-contained), and propose several improvements
in the next section. Other types of graph were also investigated (bipartite,...) but they
did not provide better results and are therefore not presented here.

In particular, APATE starts with a set of time stamped, labeled, transactions. The
goal is, of course, to fit a model to infer future fraudulent/genuine transactions. Fur-
thermore, for each transaction of this dataset, the card holder (or user) and merchant
(or retailer) is known. APATE thus create a tripartite adjacency matrix Atri (there are
three type of node: transactions, card users and merchants) as follows:

Atri =

 0t×t At×c At×m
Ac×t 0c×c 0c×m
Am×t 0m×c 0m×m

 (2)
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where At×c = (Ac×t)
T is an adjacency matrix where transactions are linked with

their corresponding card holders , At×m = (Am×t)
T is an adjacency matrix where

transaction are linked with corresponding merchants and 0···×··· is a correctly sized
matrix full of zeros. From Atri, transition matrix P is derived (see Section 2.2).

A column vector r0 = [rTrx
0 ,rCH

0 ,rMer
0 ]T of length equal to the total number of

transactions (hence the superscript Trx), card holders (CH) and merchants (Mer)
is also created. The vector is full of zeros, except for known fraudulent transac-
tions where it is equal to one (and therefore is always zero for merchants and card
holders). Finally, element k of a vector r0 is noted [r0]k.

Then, in a convergence procedure similar to the PageRank algorithm [18], r0 is
updated to spread the fraud label through the tripartite graph. This is known as a
random walk with restart procedure (RWWR) [19]:

rk = α ·PTrk−1 +(1−α) · r0 (3)

where α is the probability to continue the walk and (1−α) is the probability to
restart the walk from a fraudulent transaction. This parameter could be tuned, but
was fixed to 0.85 in the experimental comparisons (see [18]). The procedure diffuses
the information about the transactions through the network.

Eq. 3 is iterated until convergence. Then, from rkc (where kc stands for k at
convergence) rTrx

kc , rCH
kc and rMer

kc can be extracted and considered as a risk measure
for each transaction, card holder and merchant respectively.

As fraud detection models should adapt dynamically to a changing environment,
this procedure is repeated several times, introducing a time decay factor. Each non-
zero entry of Atri and r0 is modified to characterize transactions based on current
and normal customer’s past behavior (see [2] for more details):{

[Atri]i j ← e−γ·t([Atri]i j) or 0 if no relation
[r0]k ← e−γ·t([r0]k) or 0 if no fraud

(4)

where t(·) is the (scalar) time where transaction between i and j in matrix Atri oc-
curred (or k for vector r0), and γ is a scalar set in such a way that the half-life of the
exponential is: one day, one week and one month (i.e. elements are equal to 0.5 at
half-life). For instance, if a transaction occured two weeks ago, the corresponding
element of Atri with week decay is equal to 0.25 and is 1/(214) with day decay.

Therefore, for each transaction of our starting dataset, we have 12 new features:
Transaction risk for transaction, card holder and merchant, each for four (no decay,
day decay, week decay and month decay) time windows.

However, this procedure cannot be computed in less than a few minutes, which
is not suitable with the six-seconds rule. Convergence on a graph with millions of
nodes is expensive and is therefore daily re-estimated over night. Transactions made
during the testing day are evaluated using the model trained on previous night. For
card holders and merchants, the graph-based feature values are extracted (looked
up) from the trained model, since they are likely to be part of the previous data.

Naturally, for the new transaction not part of the model, transaction-based fea-
tures have to be estimated, which is done through the formula:
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score(Trxi,k) =
1

n

∑
j=1

p ji +1
score(Meri)+

1
m

∑
j=1

p jk +1
score(CHk) (5)

where score(Trxi,k) stands for the new transaction score between merchant i and
card holder k, score(Meri) stands for the score of merchant i and score(CHk) stands
for the score of card holder k. It represents the score of a new transaction l after one
new iteration of Eq. 3 when this transaction is added to P (with pli = 1 and plk = 1).
If a new transaction involves a new merchant and/or card holder, score(Meri) and/or
score(CHk) are set to zero accordingly.

Finally, those 12 new features (plus geographical features, see Table 1) are fed to
a random forest classification model, as this model proved to perform well for the
problem at hand, predicting fraudulent transaction [20, 17].

Table 1 Features used by the random forest classifier. First group are demographical features and
second group are graph-based features. Notice that each transaction is linked with a card holder
and with a merchant at a certain date: those information are only used to build the tripartite graph.

Variable name Description
inBEL/EURO/OTH Issuing region: Belgium/Europa/World
TX AMOUNT Amount of transaction
TX 3D SECURE Transaction used 3D secure
AGE Age of card holder
langNED/FRE/OTH Card holder language: Dutch/French/Other
isMAL/FEM Card holder is Male/Female
isFoM Card holder gender unknown
BROKER Code of card provider
cardMCD/VIS/OTH Card is a Mastercard/Visa/Other
01 Mer score Merchant risk score (boolean, no time damping)
ST/MT/LT Mer score Day/week/month decay merchant risk score (3 features)
01 CH score Card Holder risk score (boolean, no time damping)
ST/MT/LT CH score Day/week/month decay Card Holder risk score (3 features)
01 Trx score Transaction risk score (boolean, no time damping)
ST/MT/LT Trx score Day/week/month decay Transaction risk score (3 features)
TX FRAUD Target variable: Fraud/Guenuine

4 The Proposed Model

While showing good performance, APATE can be improved in various ways.

4.1 Dealing with hubs

From the literature, it is known that presence of hubs in a network can harm the clas-
sifier [21, 22, 23]: hubs are nodes having a high degree and are therefore neighbors
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of a large number of nodes. In our dataset, it corresponds to popular nodes such
as popular online shops like Amazon (as an example, the dataset is anonymised).
Those nodes tend to accumulate a high value of risk score since they are connected
to a lot of transactions. A simple way to counterbalance this accumulation is to di-
vide the risk score by the node degree after convergence. In general, it is possible
to divide by any power of the node degree and/or by different powers for the three
types of nodes of the tripartite graph (transactions, card holders and merchants). In
practice however, we did not find any combination that significantly beats the simple
divide-by-node-degree option (results are not reported here).

Furthermore, it allows us to make a link with the regularized commute time ker-
nel which is K = (D−αA)−1 (where D is the degree matrix) : element i, j of this
kernel can be interpreted as the discounted cumulated probability of visiting node
j when starting from node i (see [24, 3, 25] for details). The (scalar) parameter
α ∈ ]0,1] corresponds to an evaporating or killed random walk where the random
walker has a (1−α) probability of disappearing at each step (therefore it has the
same interpretation than RWWR). This method provided the best results in a re-
cent comparative study on semi-supervised classification [3] and the second best
results in another one [26]. We will therefore use this name (RCTK) to refer to this
improvement.

4.2 Introducing a time gap

On the other hand, unlike in [2], the model cannot be based on past few days. In-
deed, fraudulent transaction tags (the variable we want to predict) cannot be known
with certainty without human investigators feedback. Moreover, since the fraud-
sters’ modus operandi is known to change over time (see 2.1), it is not acceptable
to built our model on old, less reliable (but fully inspected) data. However, it takes
several days to inspect all transactions, mainly because it is sometime card holders
that report undetected frauds. Of course, this makes our fraud detection problem
harder [27].

In arrangement with field experts, we designed a real-life scenario containing
three sets of data:

1. Training set: data where the transaction fraud labels can be taken as reliable.
2. Gap set: data where the transaction fraud labels are unknown.
3. Test set: data of the day on which the algorithm is currently tested.

It corresponds therefore to a semi-supervised learning scheme (SSL), as training
data are partially labeled. If the Gap set is totally left aside, this is an usual super-
vised learning (SL) problem again. Once again, in arrangement with field experts,
15 days of training data and seven days for the gap set were chosen [28, 9]. This
scenario is depicted on Fig. 1. Notice that on this figure, τ controls the testing day
and that models are systematically built (overnight) on the 22 previous days. By
changing τ , we get different testing days.
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τ−22 τ−7 τ

1 day

TRAINING SET

GAP SET

TEST SET

TIME

Fig. 1 Real-life FDS scenario with three sets of data. It takes several days to inspect all trans-
actions, mainly because it is sometime the card holder who reports undetected frauds. Hence, in
practice, the fraud tags of the Gap set are unknown. This scenario is repeated each day, as the
parameter τ is incremented.

4.3 Including investigators feedback

Finally, even if in this last scenario it is not possible to know all fraud tags for the
gap set, it is still conceivable that a fraction of previous alerts have been confirmed
or overturned by human investigators (typically when a fraud alert occurs, the card
is blocked and the card holder is contacted by phone). In our case, we put this num-
ber of feedbacks per day to 100, in arrangement with field experts. It is a realistic
average number of cards than a human investigator can check per day. So in each
of our gap set (except in starting condition) 700 cards have been checked by hu-
man investigators. We will take advantage of these investigated cases in order to
try to predict more accurately the fraudulent transactions. On average, it means that
roughly 1400 transaction feedbacks (two transactions per card) from previous test-
ing day (previous τ’s of our model) are available. This option will be refered as +FB
and only make sense in a SSL scheme.

4.4 Removing merchant scores

Finally, we observed that removing merchant scores rises the performance. This is
surprising at first glance but, after investigation, it turns out that new transactions
involving new merchants cause issues (with our set-up, it corresponds to roughly
20% of merchants). In this case, the risk score is set to zero, causing the method to
under-evaluate the risk. This should clearly be tackled but we choose to let this for
further work. This last option will be refers as noM.

5 Experimental comparisons

In this section, the possible variation of considered algorithms will be compared on
a real-life e-commerce credit card transaction data set obtained from a large credit
card issuer in Belgium. Those graph-based algorithms compute additional features
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and were presented in Section 3 and 4. For practical purposes, considered algorithms
are recalled in Table 2. The database is composed of 25,445,744 transactions divided
in 139 days and fraud ratio is 0.31%. Features list can be found in Table 1.

Table 2 The nine compared models, see Sections 3 and 4 for acronyms. Considered variations of
the APATE Algorithm according to four dimensions: merchant score status, hubs status, learning
scheme and utilisation of feedback. Precision@100 (see Section 5) both for fraudulent card and
transaction prediction is also reported (formatted mean ± std)

Classifier name Mer Score Damp hubs Learning Feedback Card Pr@100 Trx Pr@100
RWWR SL = APATE used no Supervised no 18.64 ± 4.66 27.78 ± 11.61
RWWR SSL used no Semi-supervised no 16.95 ± 4.46 20.85 ± 10.14
RWWR SSL +FB used no Semi-supervised yes 14.19 ± 4.43 13.89 ± 8.49
RCTK SL used yes Supervised no 23.78 ± 9.52 40.50 ± 18.00
RCTK SSL used yes Semi-supervised no 44.55 ± 9.55 50.58 ± 13.99
RCTK SSL +FB used yes Semi-supervised yes 37.15 ± 10.14 49.06 ± 14.70
RCTK noM SL discarded yes Supervised no 45.35 ± 9.06 62.25 ± 11.97
RCTK noM SSL discarded yes Semi-supervised no 56.08 ± 8.06 81.61 ± 9.00
RCTK noM SSL +FB discarded yes Semi-supervised yes 56.65 ± 8.69 84.13 ± 8.42

0 1 2 3 4 5 6 7 8 9

RCTK noM SSL +FB

RCTK noM SSL

RCTK noM SL

RCTK SSL +FB

RCTK SSL

RCTK SL

RWWR SSL +FB

RWWR SSL

RWWR SL

Friedman/Nemenyi test for Cards Prec@100

Fig. 2 Mean rank (circles and crosses) and critical difference (plain line) of the Friedman/Nemenyi
test, obtained on a tree-months real-life e-commerce credit card transaction data set. The blue (bot-
tom circle) method has the best mean rank and is significantly better than red (crosses) methods.
The Critical difference is 1.14. Performance metric is Pr@100 (Precision@100) on fraudulent card
prediction.

As a performance indicator, Precision@100 [29] was chosen, in accordance with
field experts. It means that the 100 most probable (according to models) fraudulent
transactions are checked by human investigators each day (and added as feedback
in RWWR SSL +FB, RCTK w/ SSL +FB and RCTK noM w/ SSL +FB). Similarly
all most probable fraudulent transactions are considered until 100 cards have been
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checked as usually human investigators verify all transactions of a card when they
investigate. Precision@100 reports the number of true fraudulent transaction or card
among 100 investigated cards. Notice that this last metric is more realistic as it is
somehow the normal work charge for a human investigators team.

Figure 2 compares methods from Table 2 through a Friedman/Nemenyi test [30].
To do so, we adopt a sliding window approach: each day (different τ from Fig 1) is
considered as a different (train-gap-test) dataset. This test compares the ranking pro-
vided by Table 2 methods. Friedman null hypothesis is rejected with α = 0.05 and
Nemenyi critical difference is equal to 1.14. A method is considered as significantly
better than another if its mean rank is larger by more than this amount.

Firstly, RCTK always beats RWWR, RWWR noM was therefore discarded. This
superiority indicates that tackling the hubs problem is actually important.

Secondly, SSL leads to a huge improvement, but only if hubs have been damped.
SSL predicted frauds tend to contain more frauds with a fraudulent activity during
gap days, compared to SL ones. As the fraud tag is hidden for the gap set, it means
that this information is obtained by network analysis (train+gap).

Thirdly, even if +FB bring some kind of information, it only increases perfor-
mance when hubs are tackled (RCTK) and merchant scores are removed (noM).
By the way, results are not significantly better on our three-months dataset. Further
analysis (not reported here) shows that with more data days and more checked cards,
this improvement becomes significant (with α = 0.05).

Lastly, removing merchant scores rises performance as explained in Section 4.
Overall, the best combination is RCTK noM SSL +FB, but it is not significantly

better than RCTK noM SSL.
Finally, Figure 3 indicates the frequency of selected features by the random forest

classifier. The method is RCTK SSL +FB and selects Mer scores most often. Sadly,
new transactions involving new merchants cause issues. In this case, the risk score
is set to zero, causing the method to under-evaluate the risk, resulting in a biased
prediction. Discarding those four features (Mer scores) does increase the overall
performance and selected variables of random forests stay similarly distributed.

6 Conclusion

In this paper, we start from an existing Fraud Detection Systems (FDS) APATE and
bring several improvements: which have a huge impact on performances damping
hub nodes (RCTK), introduce restrictions due to real application (SSL, Gap set,
Pr@100 as a metric) and introduce feedback information from human investigators
(+FB). Those improvements multiply the Pr@100 by three, both on fraudulent card
or transaction prediction (for acronyms, see Section 4).

However, introducing feedback does not lead to a significant improvement: feed-
back impact can be increased if more cards are checked, but this is non-realistic
for investigators. New transactions involving new merchants are still an issue (see
noM in Section 4) which is let for further work: a possible way would be to mimic
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Fig. 3 Selected variables of random forests for the RCTK SSL +FB model for all days. Mer scores
tend to bias the prediction. Discarding those four features does increase the overall performance
(see Figure 2) and selected variables of random forests stay similarly distributed.

the learning procedure from [31]. Another envisaged further work is to introduce
semi-supervised learning not only on graph analysis but also in main classifier.
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